The Structure of Mackey Functors

نویسندگان

  • Peter Webb
  • PETER WEBB
چکیده

Mackey functors are a framework having the common properties of many natural constructions for finite groups, such as group cohomology, representation rings, the Bumside ring, the topological K-theory of classifying spaces, the algebraic K-theory of group rings, the Witt rings of Galois extensions, etc. In this work we first show that the Mackey functors for a group may be identified with the modules for a certain algebra, called the Mackey algebra. The study of Mackey functors is thus the same thing as the study of the representation theory of this algebra. We develop the properties of Mackey functors in the spirit of representation theory, and it emerges that there are great similarities with the representation theory of finite groups. In previous work we had classified the simple Mackey functors and demonstrated semisimplicity in characteristic zero. Here we consider the projective Mackey functors (in arbitrary characteristic), describing many of their features. We show, for example, that the Cartan matrix of the Mackey algebra may be computed from a decomposition matrix in the same way as for group representations. We determine the vertices, sources and Green correspondents of the projective and simple Mackey functors, as well as providing a way to compute the Ext groups for the simple Mackey functors. We parametrize the blocks of Mackey functors and determine the groups for which the Mackey algebra has finite representation type. It turns out that these Mackey algebras are direct sums of simple algebras and Brauer tree algebras. Throughout this theory there is a close connection between the properties of the Mackey functors, and the representations of the group on which they are defined, and of its subgroups. The relationships between these representations are exactly the information encoded by Mackey functors. This observation suggests the use of Mackey functors in a new way, as tools in group representation theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolutions of Mackey functors

I will build some standard resolutions for Mackey functors which are projective relative to p-subgroups. Those resolutions are closely related to the poset of p-subgroups. They lead to generalizations of known results on cohomology. They give a way to compute the Cartan matrix for Mackey functors, in terms of p-permutation modules, and to precise the structure of projective Mackey functors. The...

متن کامل

Some Remarks on the Structure of Mackey Functors

All Mackey functors over a finite group G are built up by short exact sequences from Mackey functors arising from modules over the integral group rings of appropriate subquotients W H of G. The equivariant cohomology theories with coefficients in Mackey functors arising from W H-modules admit particularly simple descriptions. Let G be a finite group. The notion of a Mackey functor plays a funda...

متن کامل

On the Projective Dimensions of Mackey Functors

We examine the projective dimensions of Mackey functors and cohomological Mackey functors. We show over a field of characteristic p that cohomological Mackey functors are Gorenstein if and only if Sylow p-subgroups are cyclic or dihedral, and they have finite global dimension if and only if the group order is invertible or Sylow subgroups are cyclic of order 2. By contrast, we show that the onl...

متن کامل

A Remark on Mackey-functors

In the following note we characterize the category of Mackey-functors from a category ~, satisfying a few assumptions, to a category ~ as the category of functors from Sp(~), the category of "spans" in ~, to ~ which preserve finite products. This caracterization permits to apply all results on categories of functors preserving a given class of limits to the case of Mackey-functors. We recall (c...

متن کامل

Fused Mackey functors

Let G be a finite group. In [5], Hambleton, Taylor and Williams have considered the question of comparing Mackey functors for G and biset functors defined on subgroups of G and bifree bisets as morphisms. This paper proposes a different approach to this problem, from the point of view of various categories of G-sets. In particular, the category G-set of fused G-sets is introduced, as well as th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995